Search results for "Cascaded H-Bridge Inverters"
showing 3 items of 3 documents
Performance Evaluation of a Three- Phase Five-Level Quasi-Z-Source Cascaded H-Bridge for Grid-Connected Applications
2018
In the field of the PV generation, Quasi-Z-source cascaded H-bridge (qZS-CHB) inverters are promising due to their features of modularity and high voltage conversion ratio. Thus, new topology structures and innovative modulation techniques are continuously being developed to improve the performance in terms of voltage stress and harmonic content. This paper proposes an innovative modulation technique that allows reducing the voltage stress and a specially designed grid-connected control strategy is also introduced. Through simulations in MATLAB, it has been validated that the performance of a three-phase five-level qZS-CHB is improved with the proposed solution.
Modified Modulation Techniques for Quasi-Z-Source Cascaded H-Bridge Inverters
2018
Quasi-Z-source cascaded H-bridge (q Z S - C H B) inverters are one promising solution for high power photovoltaic (PV) systems. This type of topologies inherits the advantages of cascaded converters (i.e., multilevel outputs) and impedance-source inverters (i.e., high conversion ratios). In addition, it allows increasing the inverter reliability (with high redundancy). However, the modulation and control of qZS-CHB inverters are challenging to a certain extent. Thus, this paper proposes modified modulation techniques to increase the performances of qZS-CHB converters in terms of voltage gains and stresses. The novelty lies in the use of the switching frequency optimal as reference signals i…
Innovative Computational Approach to Harmonic Mitigation for Seven-level Cascaded H-Bridge Inverters
2020
Low frequency modulation strategies are a good solution to increase the energy conversion efficiency in high power applications. The paper is devoted to presents an innovative way to low order harmonics mitigation for seven-level Cascaded H-Bridge Inverters. In particular, this approach is based on the mitigation of selected harmonics without solve non-linear equations for an extended range of the fundamental amplitude. In fact, in real-Time operation to evaluate the control angles the polynomial equations have been identified. Through circuit simulation analysis in MatLab/PLECS environment, the effectiveness of the harmonic mitigation method has been tested and compared with theoretical re…